Degree complexity for a modified pigeonhole principle
نویسندگان
چکیده
We consider a modiication of the pigeonhole principle, MPHP, introduced by Goerdt in 7]. Using a technique of Razborov 9] and simpliied by Impagliazzo, Pudll ak and Sgall 8], we prove that any Polynomial Calculus refutation of a set of polynomials encoding the MPHP, requires degree (log n). We also prove that the this lower bound is tight, giving Polynomial Calculus refutations of MPHP of optimal degree. Finally we prove a simple Lemma giving a simulation of Resolution by Polynomial Calculus.
منابع مشابه
Resolution complexity of perfect mathcing principles for sparse graphs
The resolution complexity of the perfect matching principle was studied by Razborov [Raz04], who developed a technique for proving its lower bounds for dense graphs. We construct a a constant degree bipartite graph Gn such that the resolution complexity of the perfect matching principle for Gn is 2 Ω(n), where n is the number of vertices inGn. This lower bound matches with the upper bound 2 O(n...
متن کاملResolution Complexity of Perfect Matching Principles for Sparse Graphs
The resolution complexity of the perfect matching principle was studied by Razborov [Raz04], who developed a technique for proving its lower bounds for dense graphs. We construct a a constant degree bipartite graph Gn such that the resolution complexity of the perfect matching principle for Gn is 2 Ω(n), where n is the number of vertices inGn. This lower bound matches with the upper bound 2 O(n...
متن کامل$P \ne NP$, propositional proof complexity, and resolution lower bounds for the weak pigeonhole principle
Recent results established exponential lower bounds for the length of any Resolution proof for the weak pigeonhole principle. More formally, it was proved that any Resolution proof for the weak pigeonhole principle, with n holes and any number of pigeons, is of length Ω(2n ǫ ), (for a constant ǫ = 1/3). One corollary is that certain propositional formulations of the statement P 6= NP do not hav...
متن کاملP != NP, propositional proof complexity, and resolution lower bounds for the weak pigeonhole principle
Recent results established exponential lower bounds for the length of any Resolution proof for the weak pigeonhole principle. More formally, it was proved that any Resolution proof for the weak pigeonhole principle, with n holes and any number of pigeons, is of length fl(2 ), (for a constant e = 1/3). One corollary is that certain propositional formulations of the statement P / NP do not have s...
متن کاملTight Lower Bounds on the Resolution Complexity of Perfect Matching Principles
The resolution complexity of the perfect matching principle was studied by Razborov [14], who developed a technique for proving its lower bounds for dense graphs. We construct a constant degree bipartite graph Gn such that the resolution complexity of the perfect matching principle for Gn is 2 where n is the number of vertices in Gn. This lower bound is tight up to some polynomial. Our result i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arch. Math. Log.
دوره 42 شماره
صفحات -
تاریخ انتشار 2003